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A new dielectric binary mixture formula that generalizes Beer’s equation is derived by
imposing an effective medium theory on the simple rule of mixtures modified by the
addition of an interaction term. Dielectric constants of the binary system carbon
tetrachloride/1,2-dichloroethane measured at different frequencies and of carbon
tetrachloride/butan-2-ol at different temperatures are used to test the applicability of the
new mixture formula. Goodness of fit to the experimental data is found. C© 1998 Kluwer
Academic Publishers

1. Introduction
For binary systems in which the constituents are mis-
cible, a simple and useful formula for predicting the
overall properties is the simple mixture rule. We are
here concerned specifically with the dielectric permit-
tivity of such systems. For systems with no or lit-
tle interaction between the two constituents, the sim-
ple mixture rule is appropriate. Examples abound in
the literature : a typical case is shown in Fig. 1 for
the 1,1,2,2-tetrachloroethane/1,2-dichloroethane sys-
tem [1], where the dielectric constantε is plotted
against the volume fractionV of 1,2-dichloroethane.
However, for many other systems, the simple mixture
rule can be totally unsatisfactory, as in the cases where
there is a tendency for constituents to form strong com-
plexes [2–4]. In between are systems with weakly in-
teracting constituents [5] which may be appropriately
studied by the incorporation of additional terms into the
simple linear relationship to take care of the interaction.

A natural and usual way to modify the simple mixture
rule to code for these systems is to include a single
interaction term [6] so that the modified rule becomes

ε = x(1− V)+ αV + λV(1− V) (1)

Here x andα are the dielectric constants of the con-
stituents,V is the volume concentration of theα-con-
stituent,ε the overall or effective dielectric constant
andλV(1− V) the interaction term. When the inter-
action is negligible, i.e.λ = 0, then the simple rule of
mixtures is recovered from Equation 1.λ is assumed
to be a constant for a given binary system, and is aptly
called an interaction parameter since it is associated
with the product of the concentration of the two con-
stituents in Equation 1. The notion of the constancy
of λ has to be evaluated by measurements ofε, x, α at
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different temperatures and frequencies. The presence of
λ gives a curvature to the otherwise linear relationship
betweenε and V . This curvature can be either posi-
tive or negative, depending onλ, becauseεvv = −2λ
(subscripts denote partial derivatives), and is a primary
feature which provides versatility to Equation 1 for the
description of binary systems with weakly interacting
constituents.

When the constituents are interchanged together with
their respective concentrations, i.e.x ↔ α andV ↔
(1− V), thenε in Equation 1 maintains the same form
if λ is regarded as a genuine constant. This symmetry
is of course expected of a binary system consisting of
miscible components.

In this paper we first argue thatλ cannot in general be
a true constant, i.e.λ cannot be independent ofx and
α. Having established that, we then ask howλ, now
regarded as a function ofx andα, may be determined.
We employ as the basis for the present discussion the
concepts and results developed in our previous work on
symmetric dielectric binary mixtures [7].

2. Theoretical considerations
2.1. λ cannot be an arbitrary constant
The conclusion thatλ cannot be a constant follows from
the illustration below. Consider a mixture M1 of x and
α in which the volume ratio is (1−V1) : V1, and another
mixture M2 with the ratio (1− V2) : V2. According to
Equation 1, their dielectric constantε1 andε2 respec-
tively are given by

ε1 = x(1− V1)+ αV1+ λV1(1− V1) (2)

and

ε2 = x(1− V2)+ αV2+ λV2(1− V2) (3)
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Figure 1 ε versusV for the 1,1,2,2-tetrachloroethane (C2H2Cl4)/1,2-
dichloroethane (C2H4Cl2) system, measured at 1.8 MHz and 20◦C; data
from [1]. The values atV = 0 andV = 1 are the dielectric constant of
pure 1,1,2,2-tetrachloroethane and 1,2-dichloroethane, respectively.

We now consider a third mixture, M3, this time of M1
and M2 in the ratio (1− V3) : V3. The same equation
will give

ε3 = ε1(1− V3)+ ε2V3+ λV3(1− V3) (4)

whereε3 is the dielectric constant of M3. Of course M3
is just a mixture ofx andα, and careful accounting will
show that they occur in the ratio (1− V) : V where

V = V1(1− V3)+ V2V3 (5)

This will mean that according to Equation 1

ε3 = x(1− V)+ αV + λV(1− V) (6)

In writing down Equation 4, we assumeλ is a constant
as long as the mixture is still basically one ofx andα.

Now when Equations 2 and 3 are put into Equation 4,
we get

ε3 = x(1− V)+ αV + λ[V1(1− V1)(1− V3)

+V2(1− V2)V3+ V3(1− V3)] (7)

which is generally not consistent with Equation 6. This
inconsistency implies thatλ cannot strictly be inter-
preted as independent of the dielectric constants of the
mixture constituents. If this is so, thenλ = λ(x, α) in
Equation 1. The inconsistency is removed becauseλ

in Equation 4 will now beλ(ε1, ε2) and we will not

obtain Equation 7, but a more complicated one in its
stead:

ε3 = x(1− V)+ αV + {λ(x, α)[V1(1− V1)(1− V3)

+V2(1− V2)V3] + λ(ε1, ε2)V3(1− V3)} (8)

Hereε1 andε2 are given by Equations 2 and 3.
The foregoing is practically an application of the ef-

fective medium concept of [8] to a specific symmetric
dielectric formula. We have in this case established that
λ in Equation 1 must be regarded as a function ofx and
α if the effective medium concept is to hold, and that
λ(x, α) is constrained by the consistency requirement
between Equations 6 and 8, which implies

λ(ε1, ε2) = (V1− V2)2λ(x, α) (9)

2.2. The functional form of λ(x, α)
We next come to ask how mayλ(x, α) be determined.
One way is to proceed from Equation 9 and attempt to
solve forλ(x, α). An alternative approach is to make use
of results already derived in [7] from a general consid-
eration of consistency required by the effective medium
concept. We shall take the latter approach below.

Let εv(0) andεv(1) denote (∂ε
∂V )V = 0 and (∂ε

∂V )V = 1
and likewise subscripts denote partial derivatives, then
it has been shown in [7] that

εv(0)εx = (1− V)εv (10)

and

εv(1)εα = Vεv (11)

for a symmetric dielectric mixture formulaε = ε(x,
α,V). In our case

ε(x, α,V)= x(1−V)+αV + λ(x, α)V(1−V)
(12)

from which the relevant derivatives are to be evaluated,
thus

εv = α − x + λ(x, α)(1− 2V) (13)

εv(0)= α − x + λ(x, α) (14)

εv(1)= α − x − λ(x, α) (15)

εx = (1− V)[1+ λx(x, α)V ] (16)

εα = V [1+ λα(x, α)(1− V)] (17)

Substituting these into Equations 10 and 11, we get

(α − x + λ(x, α))λx(x, α)+ 2λ(x, α) = 0 (18)

and

(α − x − λ(x, α))λα(x, α)− 2λ(x, α) = 0 (19)
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These imply that ifλ(x, α) is independent of eitherx
or α, thenλ(x, α) = 0, i.e. there will be no interac-
tion. Equation 18 may be integrated w.r.t.x by standard
methods to yield

(α − x − λ(x, α))2 = 4β(α)λ(x, α) (20)

where the function 4β(α) arises as an integration con-
stant. Likewise integrating Equation 19 gives

(α − x + λ(x, α))2 = 4γ (x)λ(x, α) (21)

with 4γ (x) being the constant of integration. Subtract-
ing Equation 20 from Equation 21, we get

β(α)+ α = γ (x)+ x (22)

from which it follows that

β(α) = c− α (23)

γ (x) = c− x (24)

wherec is a separation constant independent ofx andα.
Using either Equation 23 in Equation 20 or Equation 24
in Equation 21, we obtain

λ(x, α) = 2c− x − α ± 2
√

(c− x)(c− α) (25)

In order to satisfy the physical requirement that
λ(x, x) = 0, i.e. ifα = x thenε = x (cf. Equation 12),
we have in this case two possible solutions,

ε = x(1− V)+ αV + {2c− x − α
− 2

√
(c− x)(c− α)

}
V(1− V)

for c > α, x (26)

ε = x(1− V)+ αV + {2c− x − α
+ 2

√
(x − c)(α − c)

}
V(1− V)

for α, x > c (27)

Now λ(x, α) in Equation 25 may be rewritten as

λ(x, α) = [√c− α −√c− x
]2

for c > α, x

= −[√α − c−√x − c
]2

for α, x > c
(28)

which may be positive or negative and it can be verified
that either one satisfies Equation 9. When put back into
Equation 12, we have the possibilities

ε = x(1− V)+ αV + [√c− α
−√c− x

]2
V(1− V) for c > α, x (29)

and

ε = x(1− V)+ αV − [√α − c

−√x − c
]2

V(1− V) for α, x > c (30)

for “positive” (Equation 29) as well as “negative”
(Equation 30) interactions. A positive interaction en-
hancesε to values higher than those given by the sim-
ple mixture rule; the reverse is true for the negative
interaction.

Finally, we note that Equation 29 may be obtained
from

(c− ε)1/2 = (1− V)(c− x)1/2+ V(c− α)1/2 (31)

and Equation 30 from

(ε − c)1/2 = (1− V)(x − c)1/2+ V(α − c)1/2 (32)

by squaring both sides. These now conform to the gen-
eral expression expected of symmetric formulae [7],
and may be regarded as generalizations to Beer’s for-
mula [9]:

ε1/2 = (1− V)x1/2+ Vα1/2 (33)

Equations 31 and 32 are “exact” expressions arising
from this theory for the dielectric constant of binary
systems whose constituents interact weakly in a way
that Equation 1 holds or, more realistically, the inter-
action is such that the first order interaction is already
a sufficiently good approximation. The significance of
the constantc is that it should characterize such a bi-
nary system, and its value should remain constant for
different measurement frequencies and temperatures.
To see how well this theoretical expectation is borne
out in actuality, we shall study some experimental sys-
tems that may be nearly described by Equation 1. For a
given binary system consisting of constituentsx andα,
measurements of dielectric constant for various com-
positions ofx andα in the rangeV = 0 to V = 1 can
be made. The set of data may be fitted by Equation 1
to obtainλ and by Equation 31 or 32 to obtainc. Simi-
lar measurements can be made at different frequencies
and/or different temperatures, andλ andc similarly de-
termined. We shall then examine the “constancy”, or
not, ofc in comparison toλ, as a function of frequency
and/or temperature.

3. Experimental
In order to test the applicability of the Equations 31
and 32 for a binary system measured at different fre-
quencies, measurements of dielectric constant in the
frequency range 5 kHz to 1 MHz were made at room
temperature (20◦C) with an HP4194A high frequency
gain/phase analyser for various compositions of the two
constituents of carbon tetrachloride/1,2-dichloroethane
system. Analytical grade chemicals were used. The
stainless steel liquid sample cell was guarded and the
electrode area was 3.0× 103 mm2.

4. Results and discussion
The results for carbon tetrachloride/1,2-dichloroethane
system are shown in Fig. 2, in which curves fitted by
Equation 29 are also drawn. The frequency variation of
λ andcobtained by the least-squares fit with Equation 1
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Figure 2 ε versusV for the carbon tetrachloride (CCl4)/1,2-dichloro-
ethane (C2H4Cl2) measured at 20◦C and different frequencies. Curves
are fitted by Equation 29. The values atV = 0 andV = 1 are the di-
electric constant of pure carbon tetrachloride and 1,2-dichloroethane,
respectively.

Figure 3 The frequency variation ofc andλ for the carbon tetrachloride
(CCl4)/1,2-dichloroethane (C2H4Cl2) system.

and Equation 29, respectively, of the experimental data
are plotted in Fig. 3. It is noted that c stays fairly constant
when compared withλ.

Figure 4 ε versusV for the carbon tetrachloride (CCl4)/butan-2-ol
(C4H10O) system at various temperatures; data from [1]. Curves are
fitted by Equation 29. The values atV = 0 andV = 1 are the dielectric
constant of pure carbon tetrachloride and butan-2-ol, respectively.

For temperature variation, dielectric constant data are
found from [1] for the carbon tetrachloride/butan-2-ol
system measured at 25◦C, 35◦C, 45◦C and 55◦C. Data
and curves fitted by Equation 29 are shown in Fig. 4.
The temperature variation ofλ and c obtained by the
least-squares fit with Equation 1 and Equation 29, re-
spectively, are plotted in Fig. 5, where by comparison
c is also fairly constant.

The constantc is actually a coefficient characteriz-
ing the interaction between the two constituents of a
binary system but independent of the contribution of
the dielectric constant of each constituent (i.e. inde-
pendent of the values ofx andα). It shows a more
constant behavior w.r.t. change in frequency and tem-
perature thanλ. One may legitimately interpret this phe-
nomenon by use of Equation 28 and say thatc emerges
from λ by getting rid of the effects of temperature and
frequency dependencies implicitly associated withx
andα.

The significance of the derived Equation 31 or 32 as
compared with the original formula Equation 1 is that
the new equations always satisfy the effective medium
concept which is a plausible requirement for miscible
binary systems. Since many well-known dielectric bi-
nary mixture formulae, although derived from different
routes, are found to satisfy the effective medium the-
ory [8], we believe the latter is a useful and reasonable
theory from which this work follows. Equation 1 should
therefore only be regarded as a convenient mathemat-
ical way to describe the experimental data of a binary
system because of its simplicity in expression; Equa-
tions 31 and 32 are the improved expressions.
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Figure 5 The temperature variation ofc andλ for the carbon tetrachlo-
ride (CCl4)/butan-2-nol (C4H10O) system.

In fact Equations 31 and 32 also give a very good fit to
the dielectric constant of the systems in [5] which form
1 : 1 weak molecular complexes. The Redlich-Kister
equation used in [5]

QE = V(1− V)
3∑

i = 0

Ai (2V − 1)i (34)

where QE is the excess value, is a generalized case
of Equation 1. Nevertheless, this equation should also
be tested with the effective medium theory. For those
systems with strong complexes [2–4], higher order
terms may be needed to give a satisfactory explanation.

5. Conclusion
We conclude from the foregoing paragraphs that in-
deed c behaves roughly like a constant, i.e. it varies
with temperature and frequency to a much lesser ex-
tent thanλ, thus conforming to our expectation. Equa-
tions 31 and 32, the main result of this paper, thus ap-
pear to describe binary mixtures of weakly interacting
constituents. These equations emerge as a result of im-
posing the effective medium theory on Equation 1, an
equation that modifies the simple rule of mixtures by
the addition of an interaction term.
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